Comparison of Cube Attacks Over Different Vector Spaces
نویسندگان
چکیده
We generalise the cube attack of Dinur and Shamir (and the similar AIDA attack of Vielhaber) to a more general higher order differentiation attack, by summing over an arbitrary subspace of the space of initialisation vectors. The Moebius transform can be used for efficiently examining all the subspaces of a big space, similar to the method used by Fouque and Vannet for the usual cube attack. Secondly we propose replacing the Generalised Linearity Test proposed by Dinur and Shamir with a test based on higher order differentiation/ Moebius transform. We show that the proposed test provides all the information provided by the Generalised Linearity Test, at the same computational cost. In addition, for functions that do not pass the linearity test it also provides, at no extra cost, an estimate of the degree of the function. This is useful for guiding the heuristics for the cube/AIDA attacks. Finally we implement our ideas and test them on the stream cipher Trivium.
منابع مشابه
Vector Valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak
In this article, we define the vector valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak and study some of their topological properties and some inclusion results.
متن کاملHilbert manifold - definition *
Even if one is interested only in finite-dimensional manifolds, the need for infinitedimensional manifolds sometimes arises. For example, one approach to study closed geodesics on a manifold is to use Morse theory on its (free) loop space; while for some purposes it is enough to work with finite-dimensional approximations, it is helpful for some finer aspects of the theory to use models of the ...
متن کاملCube Testers and Key Recovery Attacks on Reduced-Round MD6 and Trivium
CRYPTO 2008 saw the introduction of the hash function MD6 and of cube attacks, a type of algebraic attack applicable to cryptographic functions having a low-degree algebraic normal form over GF(2). This paper applies cube attacks to reduced round MD6, finding the full 128-bit key of a 14-round MD6 with complexity 2 (which takes less than a minute on a single PC). This is the best key recovery a...
متن کاملFixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کاملNumerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES
Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...
متن کامل